Subject	Digital Systems I	Course Code	CT117	Theoretical	3 hrs / wk
Semester	2	Prerequisite	None	Practical	3 hrs / wk

Program Learning Components			
	 Understanding the various types of Binary Arithmetic and Boolean algebra. To introduce the concept of basic logic gates. 	Resources	Practical
Week 1-5	 To understand the: Binary arithmetic. Boolean algebra. Comprehend fully the concept of: -basic logic gates. [and, or, not, nand, nor, ex-or, exnor]. 	-Lesson Plan -Chalk board -Comprehensive workbook of control engineering and systems and data sheets.	To be able to design and Implement combinations of logic circuits.
Week	3. Introducing Boolean Algebra and minimization4. Techniques. Designing combinations of logic circuits.	Resources	Practical
6-9	Comprehension of: Boolean algebra and its associated theorems. To understand the: Logic minimization using Boolean theorems and K-Map To understanding the functional logic unit such as: Encoders, decoders, multiplexers, demultiplexers,	-Lesson PlanChalk boardComprehensive workbook of control engineering and systems and data sheets.	Supervise the laboratory and support students in their practical work.

	Half Adder, Full Adderetc		
Week	5. Understanding and ability to design Sequential circuits and analysis.	Resources	Practical
10-14	To understanding the: Basic unit of sequential circuits. Comprehension of the design and analysis process for: synchronous logic design. Asynchronous counters& registers. *Parallel registers, shift registers *Ripple counter, up – down counter Int. ROM, Ram, Pla, Prom, EPROM.	-Lesson PlanChalk boardComprehensive workbook of control engineering and systems and data sheets.	Supervise the laboratory and support students in their practical work.

Course Assessment:

Course Work	Mid-Term Tests	Final Exam Practical	Final Examination
10	30	20	40

NOTE: Course Work may include assignments, projects and practical activities.